

1/34

Measures of Agreement MRM515 - Biomedical Imaging Study Design & Research Methods

Marcio Augusto Diniz, Ph.D. Biostatistics and Binformatics Research Center Cedars Sinai Medical Center

July 5, 2022

Marcio Augusto Diniz, Ph.D. Measures of Agreement

4日 + 4日 + 4 三 + 4 三 - 9 4 (P)

Zhang et al. Journal of Cardiovascular Magnetic Resonance (2018) 20:39 https://doi.org/10.1186/s12968-018-0453-z Journal of Cardiovascular Magnetic Resonance

RESEARCH

990

2/34

3D whole-brain vessel wall cardiovascular magnetic resonance imaging: a study on the reliability in the quantification of intracranial vessel dimensions

Na Zhang^{1,2,3}, Fan Zhang², Zixin Deng^{2,4}, Qi Yang², Marcio A. Diniz⁵, Shlee S. Song⁶, Konrad H. Schlick⁶, M. Marcel Maya⁷, Nestor Gonzalez⁸, Debiao Li^{2,4,9}, Hairong Zheng^{1,3}, Xin Liu^{1,3*} and Zhaoyang Fan^{2,9*}

Marcio Augusto Diniz, Ph.D. Measures of Agreement

- ロ ト - 4 同 ト - 4 回 ト

Summary

- One of the potentially important applications of three-dimensional (3D) intracranial vessel wall (IVW) cardiovascular magnetic resonance (CMR) is to monitor disease progression and regression via quantitative measurement of IVW morphology during medical management or drug development;
- Lumen volume, Wall volume, Normalized wall index, Mean wall thickness, Maximum wall thickness;
- Five different regions: ACA, BA, ICA, MCA, VA;
- 24 healthy subjects and 10 patients;

◆□▶ ◆□▶ ◆ 三▶ ◆ 三 ◆ ○ へ ○ 3/34

Any biological variable in a number of individuals or repeatedly within an individual always exhibit a range of values;

Measurement variability

The variability is associated to external conditions under which the biological variable is being measured.

Error variability

- The variability is associated to the instrument used to measure the biological variable.
 - Random: The observed values may be sometimes higher or lower than the true values, but on average it is the true value.
 - Systematic: The observed values have a tendency to be high or low than the true values, such that on average it is biased.

590

Repeatability

- Will a second measurement in the same subject by the same observer under identical conditions be the same?
- It is also know as intra-observer variability;

Reproducibility

- Will two measurements in the same subject by two different observers under identical conditions be the same?
- It is also know as inter-observer variability;
- Two observers can be two different machines, techniques (including gold standard) or operators.
- It only evaluated if there is repeatability;

◆□▶ ◆母▶ ◆臣▶ ◆臣▶ 臣 - 釣�(で)

3D intracranial vessel wall

Imaging protocol: A patient can be scanned to have either a 3D or 2D cardiovascular image resonance (CMR) and a reader performs above vessel wall and lumen measurements: Lumen volume, Wall volume, Normalized wall index, Mean wall thickness, Maximum wall thickness;

What are the possible causes of variability?

- Technique (3D or 2D CMR): Inter-technique;
- Scan: Inter-scan;
- Reader: Inter-observer, intra-observer.

◆□▶ ◆母▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ -

- Most of the methods can be applied to evaluate intra- and inter-variability;
- The choice depends on the nature of the biological variable.

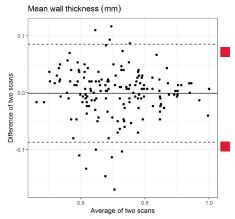
Numerical

- Bland and Altman diagram;
- Intra-class correlation;
- Lin's concordance correlation;
- Paired t-test.

Marcio Augusto Diniz, Ph.D. Me

Measures of Agreement

◆□▶ ◆□▶ ◆豆▶ ◆豆▶ ̄豆 ______.

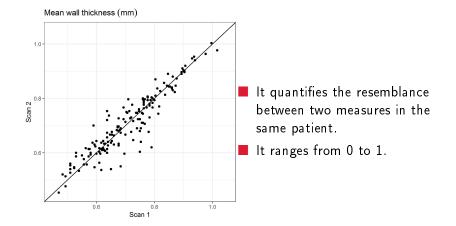

- Most of the methods can be applied to evaluate intra- and inter-variability;
- The choice depends on the nature of the biological variable.

Categorical

- Kappa statistic;
 - McNemar test;
- If one of the techniques is the gold standard:
 - Sensitivity and Specificity;
 - Positive and Negative Predictive Values.

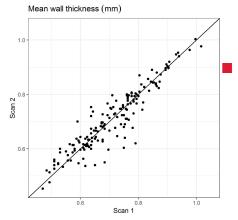
▲□▶ ▲□▶ ▲豆▶ ▲豆▶ = 三 - のへ(~)

Bland-Altman diagram


It helps to identify systematic differences between the measurements as function of the true measure;

The average of measures is a good estimate of the true measure, which is unknown;

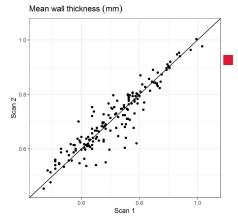
nac


8/34

Measures of Agreement

Measures of Agreement

500


It can be calculated in three different ways depending on the experiment,

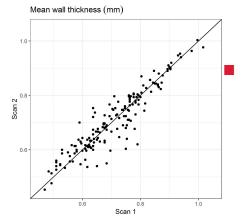
 One-way random: each patient is measured by a different set randomly selected observers;

Measures of Agreement

・ロト ・四ト ・ヨト ・ヨト

900

It can be calculated in three different ways depending on the experiment,


 Two-way random: observers are randomly selected, then, each patient is measured by the same set of observers;

nac

9/34

Measures of Agreement

・ロト ・日下・ ・日下・ ・日下

It can be calculated in three different ways depending on the experiment,

 Two-way mixed: observers are fixed, then, each patient is measured by the same set of observers.

nac

9/34

Marcio Augusto Diniz, Ph.D.

Measures of Agreement

・ロト ・四ト ・ヨト ・ヨト

Intra-class correlation What is the difference between Intra-class and Pearson correlation?

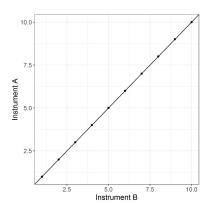


Figure: Pearson correlation = ? and Intra-class correlation = ?

 Pearson correlation measures how strongly pairs of variables are linear related;

Intra-class correlation measures how strongly pairs of measures in the same sample unit relate to each other.

5900

10/34

Intra-class correlation What is the difference between Intra-class and Pearson correlation?

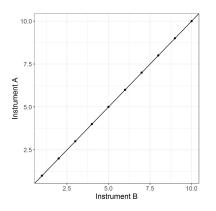


Figure: Pearson correlation = 1 and Intra-class correlation = 1 Pearson correlation measures how strongly pairs of variables are linear related;

Intra-class correlation measures how strongly pairs of measures in the same sample unit relate to each other.

5900

10/34

What is the difference between Intra-class and Pearson correlation?

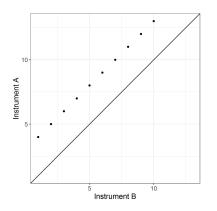


Figure: Pearson correlation = ? and Intra-class correlation = ?

 Pearson correlation measures how strongly pairs of variables are linear related;

Intra-class correlation measures how strongly pairs of measures in the same sample unit relate to each other.

500

10/34

What is the difference between Intra-class and Pearson correlation?

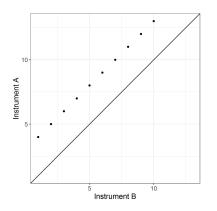


Figure: Pearson correlation = 1 and Intra-class correlation = 0.357

 Pearson correlation measures how strongly pairs of variables are linear related;

Intra-class correlation measures how strongly pairs of measures in the same sample unit relate to each other.

500

10/34

What is the difference between Intra-class and Pearson correlation?

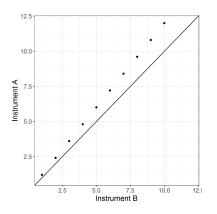


Figure: Pearson correlation = ? and Intra-class correlation = ?

 Pearson correlation measures how strongly pairs of variables are linear related;

Intra-class correlation measures how strongly pairs of measures in the same sample unit relate to each other.

Sac

10/34

What is the difference between Intra-class and Pearson correlation?

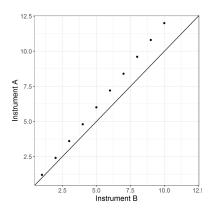


Figure: Pearson correlation = 1 and Intra-class correlation = 0.343

 Pearson correlation measures how strongly pairs of variables are linear related;

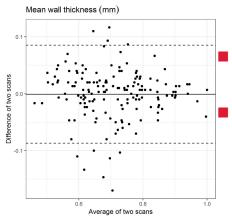
Intra-class correlation measures how strongly pairs of measures in the same sample unit relate to each other.

• □ • • @ • • E • • E •

Э

Sac

10/34


Lin's concordance correlation coefficient

Mean wall thickness (mm) 1.0 It ranges from -1 to 1; 0.8 Scan 2 It yields similar values to ICC: 0.6 It can be applied to ordinal and nominal gualitative variables. 0.6 0.8 1.0 Scan 1

Figure: ICC = 0.9795195 and CCC = 0.9795091

Measures of Agreement

500

Paired t-test is equivalent to a one sample t-test for the difference;

One sample t-test:

*H*₀: mean difference = 0 vs

•
$$H_1$$
: mean difference \neq 0;

- ₹ 🖹 🕨

Þ

Э

500

12/34

▶ p-value = 0.8387.

Marcio Augusto Diniz, Ph.D.

Measures of Agreement

Image: A math a math

Chen et al. Journal of Cardiovascular Magnetic Resonance (2018) 20:42 https://doi.org/10.1186/s12968-018-0459-6

Iournal of Cardiovascular Magnetic Resonance

RESEARCH

Sac

13/34

Cardiovascular magnetic resonance blackblood thrombus imaging for the diagnosis of acute deep vein thrombosis at 1.5 Tesla

Hanwei Chen^{1,2†}, Xueping He^{1,2†}, Guoxi Xie^{3,4*}, Jianke Liang¹, Yufeng Ye¹, Wei Deng¹, Zhuonan He¹, Dexiang Liu¹, Debiao Li⁵, Xin Liu⁶ and Zhaoyang Fan⁵

Marcio Augusto Diniz, Ph.D.

Measures of Agreement

Summary

- Cardiovascular magnetic resonance (CMR) black-blood thrombus imaging (BBTI) technique;
- Diagnosis of acute deep vein thrombosis (DVT);
- 15 healthy subjects and 30 acute DVT patients;
- Two blinded and independent readers;
- Contrast-enhanced CMR (CE-CMRV) as reference (gold standard).

999

Acute deep vein thrombosis

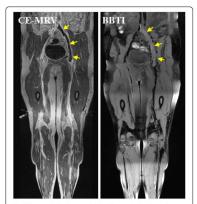


Fig. 1 Representative images obtained by contrast-enhanced cardiovascular magnetic resonance (CE-CMRR) and black blood thrombus imaging (BBT) from a 55-year-old woman with deep venous thrombosis (DVT) symptom onset at 5 days. The thrombus detected by BBTI showed iso-intense signals within the black-blood venous lumen. The locations and sizes of the thrombi between BBTI and CE-CMRV matched (yellow arrows)

- BBTI: positive or negative;
- CE-CMRV: positive or negative;
- What are the causes of variability?

Sac

15/34

Marcio Augusto Diniz, Ph.D.

Acute deep vein thrombosis

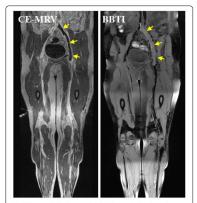


Fig. 1 Representative images obtained by contrast-enhanced cardiovascular magnetic resonance (CE-CMR9) and black blood thrombus imaging (BR1) from a 55-year-old woman with deep venous thrombosis (UVT) symptom onset at 5 days. The thrombus detected by BB1 showed iso-intense signals within the black-blood venous lumen. The locations and sizes of the thrombi between BBTI and CE-CMR9 matched (yellow arrows)

- BBTI: positive or negative;
- CE-CMRV: positive or negative;
- What are the causes of variability?
 - Technique: Inter-technique;

500

15/34

Marcio Augusto Diniz, Ph.D.

Acute deep vein thrombosis

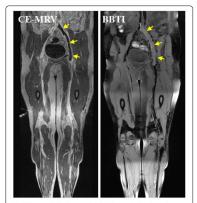


Fig. 1 Representative images obtained by contrast-enhanced cardiovascular magnetic resonance (CE-CMRR) and black blood thrombus imaging (BBT) from a 55-year-old woman with deep venous thrombosis (DVT) symptom onset at 5 days. The thrombus detected by BBTI showed iso-intense signals within the black-blood venous lumen. The locations and sizes of the thrombi between BBTI and CE-CMRV matched (yellow arrows)

- BBTI: positive or negative;
- CE-CMRV: positive or negative;
- What are the causes of variability?
 - Technique: Inter-technique;
 - Reader: Inter-observer, intra-observer.

Sac

15/34

It measures the agreement between readers that is not because of pure chance;

▲□▶ ▲□▶ ▲ 三▶ ▲ 三 ● ○ ○ ○ 16/34

Reader 2	Reader 1		
Reader 2	Negative	Positive	Total
Negative	43	3	46
Positive	0	14	14
Tota	43	17	60

 $p_o = \frac{43 + 14}{60} = 0.95;$

Table: Observed BBTI Reading -Tibiofibular trunk vein

Measures of Agreement

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Reader 2	Reader 1		
Neauer 2	Negative	Positive	Total
Negative	43	3	46
Positive	0	14	14
Total	43	17	60

n		43 + 14	= 0.9	۲
р _о	_	60	- 0.9	Э,

Reader 2	Reader 1		
Neauer 2	Negative	Positive	Tota
Negative			0.76
Positive			0.24
Tota	0.71	0.29	1

Table: Observed marginalproportions BBTI Reading -Tibiofibular trunk vein

Measures of Agreement

(ロ) (部) (注) (注) (三)

990

Reader 2	Reader 1		
Neauer 2	Negative	Positive	Total
Negative	43	3	46
Positive	0	14	14
Total	43	17	60

n		43 + 14	_	0.95;
p _o	_	60	_	0.95,

Reader 2		Reader 1	
Neauer 2	Negative	Positive	Total
Negative	0.5396	0.2204	0.76
Positive	0.1704	0.0696	0.24
Total	0.71	0.29	1

Table: Expected proportions BBTIReading assuming pure chance -Tibiofibular trunk vein

Measures of Agreement

990

Reader 2	Reader 1		
iteauer 2	Negative	Positive	Total
Negative	43	3	46
Positive	0	14	14
Total	43	17	60

Reader 2		Reader 1	
iteauer 2	Negative	Positive	Total
Negative	32.376	13.224	46
Positive	10.224	4.176	14
Tota	43	17	60

Table: Expected BBTI Reading -Tibiofibular trunk vein

$$p_o = \frac{43 + 14}{60} = 0.95; p_e = \frac{32.376 + 4.176}{60} = 0.6092$$

(ロ) (部) (注) (注) (三)

900

17/34

Reader 2	Reader 1		
iteauer 2	Negative	Positive	Total
Negative	43	3	46
Positive	0	14	14
Total	43	17	60

Reader 2		Reader 1	
Neauer 2	Negative	Positive	Total
Negative	32.376	13.224	46
Positive	10.224	4.176	14
Total	43	17	60

Table: Expected BBTI Reading -Tibiofibular trunk vein

$$p_o = \frac{43 + 14}{60} = 0.95;$$

$$p_e = \frac{32.376 + 4.176}{60} = 0.6092$$

$$\kappa = 1 - \frac{1 - 0.95}{1 - 0.6092} = 0.87$$

(ロ) (部) (注) (注) (三)

900

17/34

Kappa	Agreement
0 - 0.2	None
0.21 - 0.4	Slight
0.41 - 0.6	Moderate
0.61 - 0.8	Substantial
0.81 - 1.0	Almost Perfect

Table: Landis, J.R.; Koch, G.G. (1977). "The measurement of observer agreement for categorical data". Biometrics. 33 (1): 159-174. doi:10.2307/2529310. JSTOR 2529310. PMID 843571

▲□▶ ▲□▶ ▲豆▶ ▲豆▶ 三豆 - 釣�(♡)

Kappa	Agreement
0 - 0.4	Poor
0.41 - 0.75 0.75 - 1	Fair to good Excellent

Table: Fleiss, J.L. (1981). Statistical methods for rates and proportions (2nd ed.). New York: John Wiley. ISBN 0-471-26370-2.

↓ □ ▶ ↓ □ ▶ ↓ Ξ ▶ ↓ Ξ ▶ ↓ Ξ → ○ ○ 19/34

Test of Hypothesis

 $\blacksquare H_0: \kappa = 0 \text{ (Disagreement) vs } H_1: \kappa > 0 \text{ (Agreement)}$

Marcio Augusto Diniz, Ph.D.

Measures of Agreement

↓ □ ▶ ↓ □ ▶ ↓ Ξ ▶ ↓ Ξ ▶ Ξ ♡ 𝔅 20/34

Test of Hypothesis

$$lacksymbol{H}_0:\kappa=0$$
 (Disagreement) vs $H_1:\kappa>0$ (Agreement)

p-value < 0.001</p>

Measures of Agreement

▲□▶ ▲□▶ ▲豆▶ ▲豆▶ 三豆 - 釣�(♡)

Test of Hypothesis

- $\blacksquare H_0: \kappa = 0 \text{ (Disagreement) vs } H_1: \kappa > 0 \text{ (Agreement)}$
- p-value < 0.001</p>
- 95% CI: [0.72; 1]

Marcio Augusto Diniz, Ph.D.

Measures of Agreement

↓ □ ▶ ↓ □ ▶ ↓ Ξ ▶ ↓ Ξ ▶ ↓ Ξ → ○ ○ 20/34

Test of Hypothesis

- $\blacksquare H_0: \kappa = 0 \text{ (Disagreement) vs } H_1: \kappa > 0 \text{ (Agreement)}$
- p-value < 0.001</p>
- 95% CI: [0.72 ; 1]

Kappa < 0

- It is possible when the agreement in the observed data is lower than the agreement due pure chance;
- It should be considered as zero.

▲□▶ ▲□▶ ▲ 壹▶ ▲ 壹 ▶ 亘 ∽ � ඥ 20/34

McNemar test

$$H_0: p_{1.} = p_{.1} \text{ and } p_{2.} = p_{.2} \text{ (Agreement)};$$

$$H_1: p_{1.} \neq p_{.1} \text{ or } p_{2.} \neq p_{.2} \text{ (Disagreement)};$$

The rejection of null hypothesis indicates disagreement, which it is the opposite of Kappa.

Reader 2	F	Reader 1	
Neduel 2	Negative	Positive	Total
Negative	p_{11}	<i>p</i> ₁₂	<i>p</i> _{1.}
Positive	<i>p</i> ₂₁	p ₂₂	p _{2.}
Total	<i>p</i> .1	<i>p</i> .2	1

Table: Proportion table

Measures of Agreement

↓ □ ▶ ↓ □ ▶ ↓ Ξ ▶ ↓ Ξ ▶ ↓ Ξ → ○ ○ 21/34

Reader 2	F	Reader 1	
Neauer 2	Negative	Positive	Total
Negative	43	3	46
Positive	0	14	14
Total	43	17	60

Table: Observed BBTI Reading - Tibiofibular trunk vein

Marcio Augusto Diniz, Ph.D. Measures of Agreement

< □ ▶ < @ ▶ < 差 ▶ < 差 ▶ 差 り < ℃ 22/34

Reader 2	F	Reader 1	
Reader 2	Negative	Positive	Total
Negative	0.71	0.05	0.76
Positive	0	0.24	0.24
Total	0.71	0.29	1

Table: Observed proportions BBTI Reading - Tibiofibular trunk vein

Marcio Augusto Diniz, Ph.D. Measures of Agreement

<□ ▶ < @ ▶ < \ > ↓ \ \ = ▶ \ = つへで 22/34

Reader 2	F	Reader 1	
	Negative	Positive	Total
Negative	0.71	0.05	0.76
Positive	0	0.24	0.24
Total	0.71	0.29	1

Table: p-value = 0.2482

Marcio Augusto Diniz, Ph.D.

Measures of Agreement

▲□▶ ▲□▶ ▲ 三▶ ▲ 三 → ○ ○ ○

- Statistical measures of performance for a binary diagnostic test assuming that there is a gold standard or reference;
- Sensitivity (SE) and Specificity (SP) characterize the test for any prevalence;
- Positive Predictive Value (PPV) and Negative Predictive Value (NPV) are specific for a given prevalence.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三 → ○ へ 0 23/34

BBTI	(CE-CMRV	
DDTT	Negative	Positive	Total
Negative	43	3	46
Positive	1	13	14
Tota	44	16	60

BBT	CE-CMRV		
DDT	Negative	Positive	Total
Negative	n11	n1 2	n ₁ .
Positive	n21	n22	n2.
Tot a	n. 1	n.2	n

Table: Theoretical counts

Sensitivity = True Positive:

SE	=	P(BBTI + CE-CMRV +)
	=	<u>n22</u>
		<i>n</i> .2
		13
	=	16
	=	0.81

◆□ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ → ○ < ○ ↓</p>

24/34

BBTI	(CE-CMRV	
DDTT	Negative	Positive	Total
Negative	43	3	46
Positive	1	13	14
Total	44	16	60

BBT	CE-CMRV		
DDTT	Negative	Positive	Total
Negative	n11	n12	n ₁ .
Positive	n21	n22	n2.
Total	<i>n</i> . 1	n.2	n

Table: Theoretical counts

Specificity = True Negative:

$$SP = P(BBTI - |CE-CMRV -)$$
$$= \frac{n_{11}}{n_{.1}}$$
$$= \frac{43}{44}$$
$$= 0.98$$

◆□ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ → ○ < ○ ↓</p>

24/34

Marcio Augusto Diniz, Ph.D.

BBTI	(CE-CMRV	
DDTT	Negative	Positive	Total
Negative	43	3	46
Positive	1	13	14
Tota	44	16	60

BBTI	CE-CMRV		
BBTI	Negative	Positive	Total
Negative	n11	n ₁₂	n ₁ .
Positive	n21	n22	n2.
Total	n. 1	n.2	n

Table: Theoretical counts

Positive Predictive Value:

PPV	=	P(CE-CMRV+ BBTI+)
	_	<u>n₂₂</u>
		<i>n</i> ₂ .
		13
	=	14
	=	0.92

◆□ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ → ○ < ○ ↓</p>

24/34

Prevalence = 26.6%

BBTI	CE-CMRV			
	Negative	Positive	Total	
Negative	43	3	46	
Positive	1	13	14	
Tota	44	16	60	

ввті	CE-CMRV			
	Negative	Positive	Total	
Negative	n11	n12	n ₁ .	
Positive	n21	n22	n2.	
Total	n. 1	n.2	n	

Table: Theoretical counts

Negative Predictive Value:

NPV	=	P(CE-CMRV- BBTI-)
	=	<u>n₁₁</u>
		<i>n</i> _{1.}
		43
	=	46
	=	0.93

◆□ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ → ○ < ○ ↓</p>

24/34

Prevalence = 26.6%

Diagnostic Measures

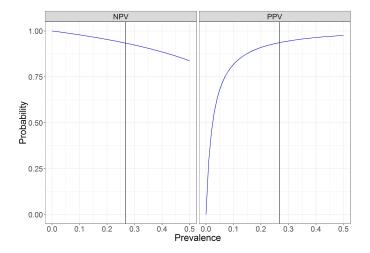


Figure: PPV and NPV values for SE = 0.81 and SP = 0.98

Marcio Augusto Diniz, Ph.D.

Measures of Agreement

◆□▶ ◆□▶ ◆ 壹▶ ▲ 壹 ▶ 三 ∽ Q ○ 25/34

- Sensitivity: 81% 95%CI (54% ; 96%)
- Specificity: 98% 95%Cl (88% ; 100%)
- PPV: 92% 95%CI (66%; 100%) for prevalence = 26%;
- NPV: 93% 95%Cl (82%; 99%) for prevalence = 26%;

(日)

Sac

27/34

Contents lists available at ScienceDirect

Multiple Sclerosis and Related Disorders

journal homepage: www.elsevier.com/locate/msard

Original article

A Check fo

Preventing multiple sclerosis misdiagnosis using the "central vein sign": A real-world study

Marwa Kaisey^{a,*}, Andrew J. Solomon^b, Brooke L. Guerrero^a, Brian Renner^a, Zhaoyang Fan^c, Natalie Ayala^a, Michael Luu^d, Marcio A. Diniz^d, Pascal Sati^a, Nancy L. Sicotte^a

^a Cedars-Sinai Medical Center Department of Neurology, 127 S. San Vicente Blvd, Suite A6600, Los Angeles, CA 90048, USA

^b Larner College of Medicine at the University of Vermont, Department of Neurological Sciences, 1 South Prospect Street, Arnold, Level 2, Burlington, Vermont 05401, USA

^c Cedars-Sinai Biomedical Imaging Research Institute, 116 N Robertson Blvd, Los Angeles, CA 90048, USA

^d Cedars-Sinai Biostatistics and Bioinformatics Research Center, 8700 Beverly Blvd North Tower, Los Angeles, CA 90048, USA

Measures of Agreement

Summary

- Misdiagnosis of multiple sclerosis (MS) is common and often occurs due to misattribution of non-MS magnetic resonance imaging (MRI) lesion;
- A new MRI biomarker, the central vein sign, has been demonstrated high specificity for MS lesions and may prevent misdiagnosis;
- 15 non-MS and 15 MS patients;
- Two blinded and independent readers;
- Goal: Identify a cutoff that discriminate between MS and non-MS patients.

Measures of Agreement

▲□▶ ▲□▶ ▲ 壹▶ ▲ 亘 → 의 ♀ ○ 28/34

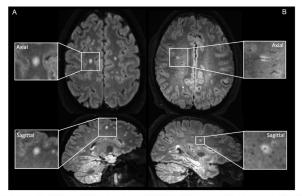


Figure 1. (Larger view file uploaded separately): Axial and sagittal views of 3T FLAIR⁴ brain MRI in two patients. A) Non-inflammatory lesion without CVS in a patient misdiagnosed with MS (final diagnosis migraine and cervical disc degeneration). B) Inflammatory demyelinating lesion with CVS in a patient with MS. The hypointense vein numing centrally through the hyperimeters focal lesion can be seen in both views. CVS: central vein sign.

Marcio Augusto Diniz, Ph.D.

Measures of Agreement

◆□ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ <

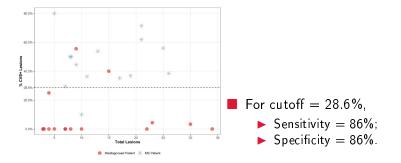


Figure: How do we choose the cut-off that best discriminate between MS and non-MS patients?

Marcio Augusto Diniz, Ph.D. Measures of Agreement

・ロト ・四ト ・ヨト・ヨト

Э

500

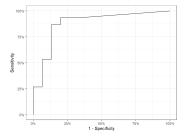


Figure: AUC: 0.88 95% (0.746 ; 1)

- We can calculate Sensitivity and Specificity for every possible cutoff;
- Then, we can plot the Receive Operating Characteristic (ROC) Curve;
- The Area Under the Curve (AUC) indicates the discrimination ability of a biomarker.

(日)

500

31/34

э

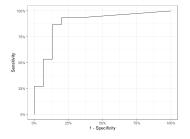


Figure: AUC: 0.88 95%CI (0.746; 1)

One of most common criterion to identify a cutoff based on ROC Curve is maximizing the Youden Index = Specificity + Sensitivity - 1.

Measures of Agreement

• □ ▶ • □ ▶ • □ ▶ • □ ▶

э

5900

- When we calculate sensitivity and specificity in the same sample used to identify cut-off, the estimates for sensitivity and specificity will be optimistic;
- Therefore, validation studies should be performed;
- When external validation samples are not available, bootstrap or cross-validation methods can be applied.
 - Sensitivity = 77% 95%Cl (39% 96%);
 - ▶ Specificity = 82% 95%Cl (36% 93%).

▲□▶ ▲□▶ ▲ 三▶ ▲ 三 → ○ へ @ 33/34

- Altman DG, Bland JM. Diagnostic tests. 1: Sensitivity and specificity. BMJ: British Medical Journal. 1994 Jun 11;308(6943):1552.
- Altman DG, Bland JM. Statistics Notes: Diagnostic tests 2: predictive values. Bmj. 1994 Jul 9;309(6947):102.
- Watson PF, Petrie A. Method agreement analysis: a review of correct methodology. Theriogenology. 2010 Jun 1;73(9):1167-79.

◆□ ▶ < □ ▶ < 三 ▶ < 三 ▶ ○ ○ ○ ○ 34/34</p>