

Survival Analysis Statistics in Medical Research Fall Series

Marcio Augusto Diniz, Ph.D. Biostatistics and Bionformatics Research Center Cedars Sinai Medical Center

November 1, 2017

Marcio Augusto Diniz, Ph.D. [Survival Analysis](#page-47-0) November 1, 2017 1 / 30

[Graphical representation](#page-11-0)

[Comparing survival curves](#page-18-0)

Marcio Augusto Diniz, Ph.D. [Survival Analysis](#page-0-0) November 1, 2017 2/30

4 D F \prec \sim

÷,

Clinical trial

- Double-blind study;
- Groups: A (new treatment) and B (standard treatment);
- Aim: Comparing the percent of remission between groups along of three years.

۰

Data

- \blacksquare p: percentage of success (no relapse) considering ITT principle;
- $p_A = 38.7\%$ (12/31) and $p_B = 10\%$ (3/30);

$$
\blacksquare \ \ H_0: p_A = p_B \ \text{vs} \ H_1: p_A \neq p_B, \ \text{p value} = 0.015.
$$

Marcio Augusto Diniz, Ph.D. [Survival Analysis](#page-0-0) November 1, 2017 4/30

Is time to remission important? Relapse of autoimmune hepatitis

Relapse - No - Yes

Figure: Follow up of the first 5 patients by calendar time

Marcio Augusto Diniz, Ph.D. [Survival Analysis](#page-0-0) November 1, 2017 5 / 30

4 **D F** \mathcal{A} . Þ

Is time to remission important? Relapse of autoimmune hepatitis

Figure: Follow up of the first 5 patients by trial time

Marcio Augusto Diniz, Ph.D. [Survival Analysis](#page-0-0) November 1, 2017 6 / 30

4 D F

Is time to remission important? Relapse of autoimmune hepatitis

Figure: Hypothetical follow up of the first 5 patients until relapse by trial time

Marcio Augusto Diniz, Ph.D. [Survival Analysis](#page-0-0) November 1, 2017 7 / 30

4 D F \mathcal{A}

Definitions

- Start time;
- Length of follow-up;
- Clinical Endpoint (Death, Relapse);

4 □

 QQ

Definitions

- Start time;
- Length of follow-up;

■ Clinical Endpoint (Death, Relapse);

Challenges

■ Loss of patient follow-up.

Marcio Augusto Diniz, Ph.D. [Survival Analysis](#page-0-0) November 1, 2017 8 / 30

 \leftarrow

What is censoring?

- It is any event that does not allow us to observe our endpoint;
- It should not be excluded.

4 □

What is censoring?

- \blacksquare It is any event that does not allow us to observe our endpoint;
- It should not be excluded.

Assumptions

■ It is not informative: censored patients would have the same probability of experiencing a event as non-censored patients.

4 **D F** \prec \sim

 299

重

■ It is a methodology to estimate survival curves considering censoring;

Marcio Augusto Diniz, Ph.D. [Survival Analysis](#page-0-0) November 1, 2017 11 / 30

4 0 3 4

Kaplan-Meier curves Relapse of autoimmune hepatitis

Figure: Disease free survival combining treatments A and B

Marcio Augusto Diniz, Ph.D. [Survival Analysis](#page-0-0) November 1, 2017 12 / 30

 \leftarrow

 QQQ

Disease free survival at specific times

- 1 year: 56.48%, 95% CI: [44.94 ; 70.98]
- 2 years: 47.07%, 95% CI: [35.17 ; 63]

Disease free survival at specific times

■ 1 year: 56.48%, 95% CI: [44.94 : 70.98]

■ 2 years: 47.07%, 95% CI: [35.17 ; 63]

Median disease free survival

- It represents the time such that 50% had experienced the event of interest; In this case, 22.57 months;
- It is usually calculated using the inverse of the Kaplan-Meyer curves;
- It is not always possible to calculate.

つひひ

Disease free survival at specific times

■ 1 year: 56.48%, 95% CI: [44.94 ; 70.98]

■ 2 years: 47.07%, 95% CI: [35.17 ; 63]

Mean disease free survival

- It is the area under the Kaplan-Meier curve;
- \blacksquare If there is censoring then the mean survival is not a good summary because the area under the curve is underestimated.

Kaplan-Meier curves Relapse of autoimmune hepatitis

Figure: Disease free survival combining treatments A and B with median survival of 22.57 months and censoring rate of 24.5%.

 \leftarrow

重

 \mathcal{A}

 \sim

4 **D F** \prec

Kaplan-Meier curves Relapse of autoimmune hepatitis

Figure: Free disease survival by treatments

4 D F

 299

Þ

Log-rank Test

- \blacksquare H_0 : there are no differences between the treatments;
- \blacksquare H_1 : there are differences between the treatments;
- \blacksquare If there are more than two curves, the test cannot indicate which curves are different from the others;
- It gives all the events the same weight.

 \mathcal{A}

 \sim

4 **D F** \prec 299

重

Probabilistic model

- \blacksquare T: time to event of interest;
- $T \sim$ distribution of probability;
- \blacksquare $\lambda(t)$ is the hazard function which represents the instantaneous rate of relapse:
	- \blacktriangleright It is not a probability;
	- \blacktriangleright It is a rate of relapse at time t.

Hazard functions Relapse of autoimmune hepatitis

Figure: Hazard Function for Exponential distribution

4 D F

 QQQ

∍

Hazard functions Relapse of autoimmune hepatitis

Figure: Increasing Hazard Function for Weibull distribution

4 D F

B

 QQ

Hazard functions Relapse of autoimmune hepatitis

Figure: Decreasing Hazard Function for Weibull distribution

4 D F

Þ

Proportional hazards model

- \blacksquare T: time to event of interest;
- $\top \sim$ distribution of probability;
- \blacksquare $\lambda(t)$ is written as proportional a base hazard function,

$$
\lambda_A(t) = \lambda_B(t) \times \exp\{\beta_1 \times \text{Treatment } A\}
$$

It requires the definition of a distribution of probability to define $\lambda_0(t)$.

Simple Cox proportional hazards model

- \blacksquare T: time to event of interest;
- $\tau \sim$ distribution of probability;
- \blacksquare $\lambda(t)$ is written as proportional a base hazard function,

$$
\lambda_A(t) = \lambda_B(t) \times \exp\{\beta_1 \times \text{Treatment } A\}
$$

 \blacksquare It does not requires the definition of a distribution of probability to define $\lambda_B(t)$.

If
$$
\beta_1 = 0
$$
, then $\lambda_A(t) = \lambda_B(t)$.

つひひ

Table: Fitted Simple Cox regression

What does this p value mean? **•** $H_0: \beta_1 = 0$ $H_1: \beta_1 \neq 0$.

◂**◻▸ ◂⁄** ▸

э

 QQ

Table: Fitted Simple Cox regression

How to interpret the coefficients?

■ We calculate the hazard ratio,

$$
HR(relapse|A:B) = exp{β1} = 0.39
$$

4 D F

Ĩ.

Table: Fitted Simple Cox regression

How to interpret the coefficients?

■ We calculate the hazard ratio,

$$
HR(relapse|A:B) = \exp{\{\beta_1\}} = 0.39
$$

The treatment A has a hazard of relapse 60% (100 \times (1 – 0.39)) lower than treatment A;

Marcio Augusto Diniz, Ph.D. [Survival Analysis](#page-0-0) November 1, 2017 23 / 30

÷,

Table: Fitted Simple Cox regression

How to interpret the coefficients?

■ We calculate the hazard ratio,

$$
HR(relapse|A:B) = \exp{\{\beta_1\}} = 0.39
$$

 \blacksquare The treatment B has a hazard of relapse 2.53 $(1/0.39)$ $(95\%$ CI: 1.20 ; 5.31) times higher than the treatment A.

Marcio Augusto Diniz, Ph.D. [Survival Analysis](#page-0-0) November 1, 2017 23 / 30

Proportional hazards assumption

- It should always be verified to validate our inferences;
- If the Kaplan-Meier curves cross each other then there is evidence that the assumption is not verified;
- However, it should be verified by a statistical test using Schoenfeld residuals.

つひひ

Figure: H_0 : proportional hazards vs H_1 : non-proportional hazards, p value = 0.436

Marcio Augusto Diniz, Ph.D. [Survival Analysis](#page-0-0) November 1, 2017 25 / 30

4 D F

 QQ

Figure: H_0 : proportional hazards vs H_1 : non-proportional hazards, p value = 0.004

Marcio Augusto Diniz, Ph.D. [Survival Analysis](#page-0-0) November 1, 2017 25 / 30

4 D F

Figure: Estimated survival curves by Kaplan-Meier

 \leftarrow **B** QQ

Þ

Figure: Estimated survival curves by Kaplan-Meier

Figure: Estimated survival curves by Cox regression

 \Box

- \blacksquare T: time to event of interest;
- \blacksquare T \sim distribution of probability;

 \blacksquare $\lambda(t)$ is written as proportional a base hazard function,

$$
\lambda_{A, Yes}(t) = \lambda_{B, No}(t) \times
$$

$$
\exp{\{\beta_1 \text{Treatment: } A + \beta_2 \text{Anti-SLA: Yes}\}}
$$

Marcio Augusto Diniz, Ph.D. [Survival Analysis](#page-0-0) November 1, 2017 27 / 30

- \blacksquare T: time to event of interest;
- \blacksquare T \sim distribution of probability;
- \blacksquare $\lambda(t)$ is written as proportional a base hazard function,

$$
\lambda_{A, Yes}(t) = \lambda_{B, No}(t) \times
$$

$$
\exp{\{\beta_1 \text{Treatment: } A + \beta_2 \text{Anti-SLA: Yes}\}}
$$

\n- $$
\beta_1 = 0
$$
 implies to
\n- $\lambda_{A, \text{Yes}}(t) = \lambda_{B, \text{Yes}}(t)$
\n- $\lambda_{A, \text{No}}(t) = \lambda_{B, \text{No}}(t)$
\n

- \blacksquare T: time to event of interest;
- \blacksquare T \sim distribution of probability;
- \blacksquare $\lambda(t)$ is written as proportional a base hazard function,

$$
\lambda_{A, Yes}(t) = \lambda_{B, No}(t) \times
$$

$$
\exp{\{\beta_1 \text{Treatment: } A + \beta_2 \text{Anti-SLA: Yes}\}}
$$

\n- $$
\beta_2 = 0
$$
 implies to
\n- $\lambda_{A, \text{Yes}}(t) = \lambda_{A, \text{No}}(t)$
\n- $\lambda_{B, \text{Yes}}(t) = \lambda_{B, \text{No}}(t)$
\n

Table: Fitted Multivariable Cox regression

What does these p values mean?

• $H_0: \beta_1 = 0$ $H_1: \beta_1 \neq 0$. $H_0 : \beta_2 = 0$ $H_1 : \beta_2 \neq 0$.

4 D F

э

 QQ

Table: Fitted Multivariable Cox regression

How to interpret the coefficients?

■ We calculate the hazard ratio,

$$
HR(relapse|A:B) = exp{\beta_1} = 0.418
$$

The treatment B has a hazard of relapse 2.38 $(1/0.418)$ (95% CI: 1.14 ; 5.05) times higher than the treatment A.

Marcio Augusto Diniz, Ph.D. [Survival Analysis](#page-0-0) November 1, 2017 28 / 30

K ロ ▶ K 何 ▶

 QQQ

э

- \blacksquare T: time to event of interest;
- $\top \sim$ distribution of probability;

 \blacksquare $\lambda(t)$ is written as proportional a base hazard function,

$$
\lambda_{A, Yes}(t) = \lambda_{B, No}(t) \times
$$

\n
$$
\exp{\{\beta_1 \text{Treatment: } A + \beta_2 \text{Anti-SLA: Yes} + \beta_3 \text{Treatment: } A \times \text{Anti-SLA: Yes}\}}
$$

- \blacksquare \top : time to event of interest;
- $\top \sim$ distribution of probability;
- \blacksquare $\lambda(t)$ is written as proportional a base hazard function,

$$
\lambda_{A, Yes}(t) = \lambda_{B, No}(t) \times
$$

\n
$$
\exp{\{\beta_1 \text{Treatment: } A + \beta_2 \text{Anti-SLA: Yes} + \beta_3 \text{Treatment: } A \times \text{Anti-SLA: Yes}\}}
$$

$$
\blacksquare \quad \beta_3 = 0 \text{ implies to} \\ \quad \lambda_{A, \text{Yes}}(t) - \lambda_{B, \text{Yes}}(t) = \lambda_{A, \text{No}}(t) - \lambda_{B, \text{No}}(t)
$$

- \blacksquare T: time to event of interest;
- \blacksquare T \sim distribution of probability;
- \blacksquare $\lambda(t)$ is written as proportional a base hazard function,

$$
\lambda_{A, Yes}(t) = \lambda_{B, No}(t) \times
$$

\n
$$
\exp{\beta_1 \text{Treatment: A} + \beta_2 \text{Anti-SLA: Yes} + \beta_3 \text{Treatment: A} \times \text{Anti-SLA: Yes}}
$$

\n- $$
\beta_3 = 0
$$
 and $\beta_1 = 0$ implies to
\n- $\lambda_{A, \text{Yes}}(t) = \lambda_{B, \text{Yes}}(t)$
\n- $\lambda_{A, \text{No}}(t) = \lambda_{B, \text{No}}(t)$
\n

- \blacksquare T: time to event of interest;
- \blacksquare T \sim distribution of probability;
- \blacksquare $\lambda(t)$ is written as proportional a base hazard function,

$$
\lambda_{A, Yes}(t) = \lambda_{B, No}(t) \times
$$

\n
$$
\exp{\beta_1 \text{Treatment: A} + \beta_2 \text{Anti-SLA: Yes} + \beta_3 \text{Treatment: A} \times \text{Anti-SLA: Yes}}
$$

\n- $$
\beta_3 = 0
$$
 and $\beta_2 = 0$ implies to
\n- $\lambda_{A, \text{Yes}}(t) = \lambda_{A, \text{No}}(t)$
\n- $\lambda_{B, \text{Yes}}(t) = \lambda_{B, \text{No}}(t)$
\n

- [British Medical Journal](http://www.bmj.com/about-bmj/resources-readers/publications/statistics-square-one/12-survival-analysis)
- Clark, T. G., Bradburn, M. J., Love, S. B., & Altman, D. G. (2003). Survival analysis part I: basic concepts and first analyses. British journal of cancer, 89(2), 232.
- Bradburn, M. J., Clark, T. G., Love, S. B., & Altman, D. G. (2003). Survival analysis part II: multivariate data analysis - an introduction to concepts and methods. British journal of cancer, 89(3), 431.

つへへ

- ■ Bradburn, M. J., Clark, T. G., Love, S. B., & Altman, D. G. (2003). Survival analysis Part III: multivariate data analysis-choosing a model and assessing its adequacy and fit. British journal of cancer, $89(4)$, 605.
- Clark, T. G., Bradburn, M. J., Love, S. B., & Altman, D. G. (2003). Survival analysis part IV: further concepts and methods in survival analysis. British journal of cancer, 89(5), 781.
- Singh R, Mukhopadhyay K. Survival analysis in clinical trials: Basics and must know areas. Perspectives in clinical research. 2011 Oct $1,2(4)$:145.