

Survival Analysis Statistics in Medical Research Fall Series

Marcio Augusto Diniz, Ph.D. Biostatistics and Bionformatics Research Center Cedars Sinai Medical Center

November 1, 2017

Marcio Augusto Diniz, Ph.D.

Survival Analysis

November 1, 2017

Introduction

- 2) Graphical representation
- 3 Comparing survival curves
- 4 Regression models

э

Clinical trial

- Double-blind study;
- Groups: A (new treatment) and B (standard treatment);
- Aim: Comparing the percent of remission between groups along of three years.

Data

Treatment	Relapse	No Relapse	Drop out	Total
А	11	12	8	31
В	20	3	7	30

- p: percentage of success (no relapse) considering ITT principle;
- **p**_A = 38.7% (12/31) and $p_B = 10\%$ (3/30);

$$\blacksquare H_0: p_A = p_B \text{ vs } H_1: p_A \neq p_B, \text{ p value} = 0.015.$$

Is time to remission important? Relapse of autoimmune hepatitis

Relapse 🔶 No 📥 Yes

Figure: Follow up of the first 5 patients by calendar time

Marcio Augusto Diniz, Ph.D

Survival Analysis

November 1, 2017

э

ls time to remission important? Relapse of autoimmune hepatitis

Relapse 🔶 No 📥 Yes

Figure: Follow up of the first 5 patients by trial time

Marcio Augusto Diniz, Ph.D

Survival Analysis

November 1, 2017

6/30

э

ls time to remission important? Relapse of autoimmune hepatitis

₽ 3-10 30 20 40 Time (Months) Relapse • No A Yes

Figure: Hypothetical follow up of the first 5 patients until relapse by trial time

Marcio Augusto Diniz, Ph.D.

Survival Analysis

November 1, 2017

Definitions

- Start time;
- Length of follow-up;
- Clinical Endpoint (Death, Relapse);

Definitions

- Start time;
- Length of follow-up;

Clinical Endpoint (Death, Relapse);

Challenges

Marcio Augusto Diniz, Ph.D.

What is censoring?

- It is any event that does not allow us to observe our endpoint;
- It should not be excluded.

What is censoring?

- It is any event that does not allow us to observe our endpoint;
- It should not be excluded.

Assumptions

It is not informative: censored patients would have the same probability of experiencing a event as non-censored patients.

2 Graphical representation

э

It is a methodology to estimate survival curves considering censoring;

-				
_	Time	n at risk	n event	survival
-	0	61	0	1
	36	60	1	1-1/60
	56	58	1	1-1/60 imes 1/58

Marcio Augusto Diniz, Ph.D

Image: Image:

3

Kaplan-Meier curves Relapse of autoimmune hepatitis

Figure: Disease free survival combining treatments A and B

Marcio Augusto Diniz, Ph.D

Survival Analysis

November 1, 2017

Disease free survival at specific times

- 1 year: 56.48%, 95% CI: [44.94 ; 70.98]
- **2** years: 47.07%, 95% CI: [35.17 ; 63]

Disease free survival at specific times

1 year: 56.48%, 95% Cl: [44.94 ; 70.98]

2 years: 47.07%, 95% CI: [35.17; 63]

Median disease free survival

- It represents the time such that 50% had experienced the event of interest; In this case, 22.57 months;
- It is usually calculated using the inverse of the Kaplan-Meyer curves;
- It is not always possible to calculate.

Disease free survival at specific times

1 year: 56.48%, 95% Cl: [44.94 ; 70.98]

2 years: 47.07%, 95% CI: [35.17; 63]

Mean disease free survival

- It is the area under the Kaplan-Meier curve;
- If there is censoring then the mean survival is not a good summary because the area under the curve is underestimated.

Kaplan-Meier curves Relapse of autoimmune hepatitis

Figure: Disease free survival combining treatments A and B with median survival of 22.57 months and censoring rate of 24.5%.

Marcio Augusto Diniz, Ph.D.

э

Kaplan-Meier curves Relapse of autoimmune hepatitis

Figure: Free disease survival by treatments

Log-rank Test

- H₀: there are no differences between the treatments;
- H₁: there are differences between the treatments;
- If there are more than two curves, the test cannot indicate which curves are different from the others;
- It gives all the events the same weight.

Marcio Augusto Diniz, Ph.D.

э

Probabilistic model

- T: time to event of interest;
- **T** ~ distribution of probability;
- λ(t) is the hazard function which represents the instantaneous rate of relapse:
 - It is not a probability;
 - It is a rate of relapse at time t.

Hazard functions Relapse of autoimmune hepatitis

Figure: Hazard Function for Exponential distribution

Hazard functions Relapse of autoimmune hepatitis

Figure: Increasing Hazard Function for Weibull distribution

Marcio Augusto Diniz, Ph.D

Survival Analysis

November 1, 2017

Hazard functions Relapse of autoimmune hepatitis

Figure: Decreasing Hazard Function for Weibull distribution

Marcio Augusto Diniz, Ph.D.

Survival Analysis

November 1, 2017

Proportional hazards model

- **T**: time to event of interest;
- **\Box** $T \sim$ distribution of probability;

 \blacksquare $\lambda(t)$ is written as proportional a base hazard function,

$$\lambda_A(t) = \lambda_B(t) \times \exp\{\beta_1 \times \text{Treatment A}\}$$

It requires the definition of a distribution of probability to define $\lambda_0(t)$.

Simple Cox proportional hazards model

- **T**: time to event of interest;
- **T** ~ distribution of probability;
- \blacksquare $\lambda(t)$ is written as proportional a base hazard function,

$$\lambda_{A}(t) = \lambda_{B}(t) imes \exp\{eta_{1} imes ext{Treatment A}\}$$

It does not requires the definition of a distribution of probability to define $\lambda_B(t)$.

If
$$\beta_1 = 0$$
, then $\lambda_A(t) = \lambda_B(t)$.

Marcio Augusto Diniz, Ph.D.

Coefficients	Estimate	Std. Error	z value	p value
(Treatment A) eta_1	-0.92	0.37	2.45	0.014

What does this p value mean? $H_0: \beta_1 = 0$ $H_1: \beta_1 \neq 0.$

Marcio Augusto Diniz, Ph.D.

∃ ▶ ∢ ∃ ▶

Image: Image:

3

Coefficients	Estimate	Std. Error	z value	p value
(Treatment A) eta_1	-0.92	0.37	2.45	0.014

How to interpret the coefficients?

We calculate the hazard ratio,

$$HR(relapse|A:B) = \exp\{\beta_1\} = 0.39$$

Marcio Augusto Diniz, Ph.D.

Survival Analysis

November 1, 2017 23 / 30

э

Coefficients	Estimate	Std. Error	z value	p value
(Treatment A) eta_1	-0.92	0.37	2.45	0.014

How to interpret the coefficients?

We calculate the hazard ratio,

$$HR(relapse|A:B) = \exp{\{\beta_1\}} = 0.39$$

The treatment A has a hazard of relapse 60% $(100 \times (1 - 0.39))$ lower than treatment A;

Marcio Augusto Diniz, Ph.D.

Coefficients	Estimate	Std. Error	z value	p value
(Treatment A) eta_1	-0.92	0.37	2.45	0.014

How to interpret the coefficients?

We calculate the hazard ratio,

$$HR(relapse|A:B) = \exp{\{\beta_1\}} = 0.39$$

The treatment B has a hazard of relapse 2.53 (1/0.39) (95% CI: 1.20 ; 5.31) times higher than the treatment A.

Marcio Augusto Diniz, Ph.D.

Proportional hazards assumption

- It should always be verified to validate our inferences;
- If the Kaplan-Meier curves cross each other then there is evidence that the assumption is not verified;
- However, it should be verified by a statistical test using Schoenfeld residuals.

Figure: H_0 : proportional hazards vs H_1 : non-proportional hazards, p value = 0.436

Marcio Augusto Diniz, Ph.D.

November 1, 2017

Figure: H_0 : proportional hazards vs H_1 : non-proportional hazards, p value = 0.004

Marcio Augusto Diniz, Ph.D.

November 1, 2017

Cox Regression Relapse of autoimmune hepatitis

Figure: Estimated survival curves by Kaplan-Meier

Cox Regression Relapse of autoimmune hepatitis

Figure: Estimated survival curves by Kaplan-Meier

Figure: Estimated survival curves by Cox regression

- T: time to event of interest;
- **\Box** $T \sim$ distribution of probability;

 \blacksquare $\lambda(t)$ is written as proportional a base hazard function,

$$\lambda_{A, Yes}(t) = \lambda_{B, No}(t) \times \exp{\{\beta_1 \text{Treatment: } A + \beta_2 \text{Anti-SLA: Yes}\}}$$

Marcio Augusto Diniz, Ph.D.

- T: time to event of interest;
- **T** ~ distribution of probability;
- \blacksquare $\lambda(t)$ is written as proportional a base hazard function,

$$\lambda_{A, Yes}(t) = \lambda_{B, No}(t) \times \exp{\{\beta_1 \text{Treatment: } A + \beta_2 \text{Anti-SLA: Yes}\}}$$

$$\begin{array}{l} \beta_1 = 0 \text{ implies to} \\ \triangleright \ \lambda_{A, Yes}(t) = \lambda_{B, Yes}(t) \\ \triangleright \ \lambda_{A, No}(t) = \lambda_{B, No}(t); \end{array}$$

Marcio Augusto Diniz, Ph.D

November 1, 2017 27 / 30

- T: time to event of interest;
- **T** ~ distribution of probability;
- \blacksquare $\lambda(t)$ is written as proportional a base hazard function,

$$\lambda_{A, Yes}(t) = \lambda_{B, No}(t) \times \exp{\{\beta_1 \text{Treatment: } A + \beta_2 \text{Anti-SLA: Yes}\}}$$

$$\begin{array}{l} \beta_2 = 0 \text{ implies to} \\ & \triangleright \ \lambda_{A, \operatorname{Yes}}(t) = \lambda_{A, \operatorname{No}}(t) \\ & \triangleright \ \lambda_{B, \operatorname{Yes}}(t) = \lambda_{B, \operatorname{No}}(t) \end{array}$$

Marcio Augusto Diniz, Ph.D

Coefficients	Estimate	Std. Error	z value	p value
(Treatment A) β_1	-0.87	0.38	2.32	0.021
(Anti-SLA: Yes) β_2	1.11	0.38	2.89	0.003

Table: Fitted Multivariable Cox regression

What does these p values mean?

 $\begin{array}{ll} \blacksquare \ \ H_0: \ \beta_1 = 0 \\ \blacksquare \ \ H_0: \ \beta_2 = 0 \\ \end{array} \qquad \begin{array}{ll} H_1: \ \beta_1 \neq 0. \\ H_1: \ \beta_2 \neq 0. \end{array}$

Coefficients	Estimate	Std. Error	z value	p value
(Treatment A) eta_1	-0.87	0.38	2.32	0.021
(Anti-SLA: Yes) eta_2	1.11	0.38	2.89	0.003

Table: Fitted Multivariable Cox regression

How to interpret the coefficients?

We calculate the hazard ratio,

$$HR(relapse|A:B) = \exp{\{\beta_1\}} = 0.418$$

The treatment B has a hazard of relapse 2.38 (1/0.418) (95% CI: 1.14 ; 5.05) times higher than the treatment A.

Marcio Augusto Diniz, Ph.D.

28 / 30

Image: Image:

- T: time to event of interest;
- **\Box** $T \sim$ distribution of probability;

 \land $\lambda(t)$ is written as proportional a base hazard function,

Marcio Augusto Diniz, Ph.D.

- **T**: time to event of interest;
- **T** ~ distribution of probability;
- \blacksquare $\lambda(t)$ is written as proportional a base hazard function,

$$\lambda_{A, Yes}(t) = \lambda_{B, No}(t) \times \\ \exp{\{\beta_1 \text{Treatment: } A + \beta_2 \text{Anti-SLA: Yes} + \beta_3 \text{Treatment: } A \times \text{Anti-SLA: Yes}\}}$$

$$\beta_3 = 0 \text{ implies to}$$

$$\lambda_{A, Yes}(t) - \lambda_{B, Yes}(t) = \lambda_{A, No}(t) - \lambda_{B, No}(t)$$

Marcio Augusto Diniz, Ph.D.

- **T**: time to event of interest;
- **T** ~ distribution of probability;
- \blacksquare $\lambda(t)$ is written as proportional a base hazard function,

$$\begin{array}{lll} \lambda_{A, \operatorname{Yes}}(t) &=& \lambda_{B, \operatorname{No}}(t) \times \\ && \exp\{\beta_1 \operatorname{Treatment:} A + \beta_2 \operatorname{Anti-SLA:} \operatorname{Yes} + \\ && \beta_3 \operatorname{Treatment:} A \times \operatorname{Anti-SLA:} \operatorname{Yes} \} \end{array}$$

- T: time to event of interest;
- **\Box** $T \sim$ distribution of probability;
- \blacksquare $\lambda(t)$ is written as proportional a base hazard function,

$$\begin{array}{lll} \lambda_{A, \operatorname{Yes}}(t) &=& \lambda_{B, \operatorname{No}}(t) \times \\ && \exp\{\beta_1 \operatorname{Treatment:} A + \beta_2 \operatorname{Anti-SLA:} \operatorname{Yes} + \\ && \beta_3 \operatorname{Treatment:} A \times \operatorname{Anti-SLA:} \operatorname{Yes} \} \end{array}$$

- British Medical Journal
- Clark, T. G., Bradburn, M. J., Love, S. B., & Altman, D. G. (2003). Survival analysis part I: basic concepts and first analyses. British journal of cancer, 89(2), 232.
- Bradburn, M. J., Clark, T. G., Love, S. B., & Altman, D. G. (2003). Survival analysis part II: multivariate data analysis - an introduction to concepts and methods. British journal of cancer, 89(3), 431.

- Bradburn, M. J., Clark, T. G., Love, S. B., & Altman, D. G. (2003). Survival analysis Part III: multivariate data analysis-choosing a model and assessing its adequacy and fit. British journal of cancer, 89(4), 605.
- Clark, T. G., Bradburn, M. J., Love, S. B., & Altman, D. G. (2003). Survival analysis part IV: further concepts and methods in survival analysis. British journal of cancer, 89(5), 781.
- Singh R, Mukhopadhyay K. Survival analysis in clinical trials: Basics and must know areas. Perspectives in clinical research. 2011 Oct 1;2(4):145.