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Introduction
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• Currently, inferences can be conducted follow two approaches: 
frequentism and Bayesianism.



Classical Statistical Methods
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Classical Statistical Methods

• It is based largely on the work of Karl 
Pearson (1857 - 1936) and Ronald 
Fisher (1890 – 1962).

• Karl Pearson introduced the standard 
deviation, Chi-squared test, p-value and 
regression methods;

• Ronald Fisher introduced the Fisher’s 
Exact test, analysis of variance and 
popularized the p-value.

• A mathematical framework was 
proposed by Jerzy Neyman (1894 –
1981) and Egon Pearson (1895 – 1980).
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Classical Statistical Methods

• We are interested in populational quantities, known as parameters, that are 
unknown and fixed: prevalence of disease, treatment effect of a new drug, 
association between exposure and outcome;

• Experiments are conduct to collect data to estimate the parameters;
• However, any procedure in statistics carries uncertainty as we have limited 

information provided by our sample;
• How can we measure this uncertainty? 

• In the classical approach, we can measure this uncertainty when we 
repeat a statistical procedure in all possible samples that could have 
been sampled from the study population.
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Classical Statistical Methods

• Example: Our interest is to compare a new drug with a control group to 
evaluate whether there are differences in a biomarker. Data will be 
collected from 100 patients that will be equally randomized between drug 
and control arms. 

• The classical approach assumes that this trial could be repeated several 
times under the same conditions, in other words, there is uncertainty about 
the sample. 
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Classical Statistical Methods

• 95% Confidence Interval (CI) for treatment effect: 2 [0.04 to 3.95];
• How do you interpret a 95% CI?
• We cannot state that there is 95% of probability that the treatment effect is 

between 0.04 and 3.95 because the parameter treatment effect is fixed, in 
other words, we cannot associate probability to parameters.

• The correct interpretation is based on the sampling uncertainty: If we 
calculate a 95% confidence interval for the treatment effect in each trial, 
then 95 out of 100 confidence intervals will contain the true and unknown 
treatment effect.
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Classical Statistical Methods

• Testing the hypotheses:

Null: Treatment effect is negative or zero
Alternative: Treatment effect is positive

• Uncertainty: 5% type I error and 20% type 2 error (80% power);

• How do we interpret those measures of uncertainty?
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Classical Statistical Methods

• Identify a false treatment effect - false positive: obtaining a statistically 
significant p-value in 5 out 100 trials under the scenario that there is no 
treatment effect.

• Miss a true treatment effect - false negative: obtaining a non-statistically 
significant p-value in 20 out 100 trials under the scenario that there is a 
treatment effect.
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• Classical statistical methods are also known as frequentist statistical 
methods because they allow us to make conclusions regarding all 
possible samples without repeating a trial several times;

• In order to make such frequentist conclusions, calculations are heavily 
based on mathematical assumptions (large samples, average, normality), 
therefore, procedures are pre-specified such that calculations can be 
performed.

Classical Statistical Methods
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Frequentist Trial Designs



Example – Simon’s two stage design

• Study Design: A single-arm two-stage study for a categorical outcome

• Hypotheses: 
• Null: Complete response after new drug is at most 10%
• Alternative: Complete response after new drug is at least 30%

• Uncertainty:
• Type I error: 5%
• Type II error: 20% (power = 80%)
• It minimizes the sample size when the drug is not effective.
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Example – Simon’s two stage design

• Stage 1:
• Sample size: 11 patients
Decision rules: 
• If one or fewer complete responses are observed, then the study 

will stop and drug will be declared futile;
• If two or more complete responses are observed, the study will 

continue to stage 2;

• Stage 2:
• Sample size: 16 patients
Decision rules: 
• If at least 5 complete responses are observed among the total of 

27 patients (11 + 16), then the drug is declared effective.

• When the drug is not effective: 
• Probability of early termination is 0.69;
• The expected sample size is 15. 13



Example - Two stages using O’Brien-Fleming boundaries

• Study Design: A two-arm two-stage study for a continuous outcome

• Endpoint:
• High values indicate good prognosis;
• Minimum Clinically Important Difference = 5 units.  

• Hypotheses:
• Null: Biomarker average is the same in intervention and control groups;
• Alternative: Biomarker average in different between the intervention and 

control groups.

• Uncertainty:
• Type I error: 5%
• Type II error: 10% (power = 90%)
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Example - Two stages using O’Brien-Fleming boundaries

• O’Brien-Fleming boundaries indicates how type I and II errors should be 
spent in each stage.

• Stage 1:
• Sample size: 50 for each group
• Type I error: 0.56%
• Type II error: 2.0%

• Stage 2:
• Sample size: 50 for each group
• Type I error: 4.44%
• Type II error: 8.0%
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Example - Two stages using O’Brien-Fleming boundaries

Decision rules:
• At the end of stage 1, a standardized 

difference between groups (Z-Score or 
Z-Scale) is calculated. Then, 

• If the Z-score is below the Futility 
boundary, then intervention is 
declared futile;

• If Z-score is above the Efficacy 
boundary, then intervention is 
declared efficacious;

• If Z-score is between Efficacy and 
Futility boundaries, the 
intervention is declared promising 
and the trial proceeds to stage 2.
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Example - Two stages using O’Brien-Fleming boundaries

• At the end of stage 2:
• If the Z-score is below the Futility 

boundary, then intervention is 
declared futile;

• If Z-score is above the Efficacy 
boundary, then intervention is 
declared efficacious;
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Bayesian Statistical Methods



Bayesian Statistical Methods

• It is based on the seminal work of 
Thomas Bayes (1701 – 1761);
• Bayes' system was: Initial Belief + 
New Data       Improved Belief;
• It was rediscovered and popularized by 
Pierre-Simon Laplace (1749 – 1827) who 
applied this approach to astronomy;
• Late in his life, Laplace discovered a 
mathematical result – the Central Limit 
Theorem - that led him to support the 
frequentist approach.
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Bayesian Statistical Methods

• After Laplace’s death, the use of 
Bayesian methods declined in science as 
the modern science could not be based on 
anything that was considered subjective.
• Nonetheless, Bayesian methods had 
continued to be used to solve practical 
problems with a wide applications during 
WWII, election polls from the 60s to 80s, 
etc.
• Only in the early 90s with the 
availability of computational power, the 
Bayesian methods have become popular 
again.
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Bayesian Statistical Methods

• We are in interested in populational quantities, known as parameters, that 
are unknown and random: prevalence of disease, treatment effect of a new 
drug, association between exposure and outcome.

• Experiments are conduct to collect data to estimate the parameters;
• As previously, any procedure in statistics carries uncertainty as we have 
limited information provided by our sample.
• How can we measure this uncertainty? 

• We can measure this uncertainty when we considered all possible 
values for the parameters of interest with their associated 
probabilities.
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Bayesian Statistical Methods

• Example: Our interest is to compare a new drug with a control group to evaluate 
whether there are differences in a biomarker. Data will be collected from 100 patients 
that will be equally randomized between drug and control arms. 

• The initial belief about the parameter is known as prior distribution;

• The Bayesian approach assumes that the only sample is the observed sample;

• Once data is observed, the updated belief is known as posterior distribution.
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Bayesian Statistical Methods

• 95% Credibility Interval (CI) for treatment effect: 2 [0.04 to 3.95];
• How do you interpret a 95% CI?
• Now, we can state there is 95% of probability that the treatment effect is 

between 0.04 and 3.95.
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Bayesian Statistical Methods

We are interested in testing the hypotheses:

Null: Treatment effect is zero or less
Alternative: Treatment effect is greater than zero

• Probability(Null hypothesis) = 0.0228
• Probability(Alternative hypothesis) = 0.972
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• Based on the posterior distribution (uncertainty about the parameter after 
data is collected), decision rules or procedures can be created as a block 
building game.

• After computational power has become widely available, frequentist 
properties of Bayesian procedures can be calculated based on  computational 
simulations.

Bayesian Statistical Methods
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Bayesian Trial Designs



Example: Phase I clinical trials

• In phase I clinical trials, investigators want to identify the maximum 
tolerable dose (MTD) for a cytotoxic agent, in other words, a dose that has 
an acceptable toxicity rate.

• As it is the first study of a new drug in humans, sample sizes are limited, 
and the study is conducted by stages. 
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Example: Phase I clinical trials

• Based on the results, investigators decide how to escalate/de-escalate the dose for 
the next cohort of patients:

Initial Belief + New Data       Improved Belief;



Example: Phase I clinical trials

• There are two classes of methods that establish decision rules to 
escalate/de-escalate doses based on different criteria:

• Model-based designs: 

Continual Reassessment Method (CRM), 

Escalation with Overdose Control (EWOC);

• Model-assisted designs: 

Bayesian Optimal Interval (BOIN), 

Modified Toxicity Probability Interval (mTPI);
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Example: Predictive Probability for Futility

• A single-arm study with an interim analysis to test the hypotheses:
• Null: Complete response rate with the new drug is at most 10%
• Alternative: Complete response rate with the new drug is at least 30%

• Ah-hoc Decision Rule: If we observe at least 4 CR out 12 patients, then the 
drug is declared efficacious;

• Interim Analysis will be conducted after 9 patients;
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Example: Predictive Probability for Futility
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• After 9 patients, we have observed 2 complete responses.
• What are the chances that the drug will be declared effective?

Data Possible Scenarios



Example: Predictive Probability for Futility
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• The trial will be successful only if 2 or 3 CR are observed.

• Which scenario should be considered?
• Under the Bayesian approach, the predictive probability is a weighted 

average over all possible values of CR rate such that scenarios closer 
to the data have large weights while scenarios far away from the data 
have low weights.

• Predictive probability that trial will be successful = 0.178

Scenario True CR Rate Trial 
Conclusion

Out of 3 patients
0.1 2/9 0.3 0.9

Drug is 
effective

0 CR 0.3 0.47 0.34 0.01 No

1 CR 0.24 0.40 0.44 0.02 No

2 CR 0.03 0.12 0.19 0.24 Yes

3 CR 0.001 0.01 0.03 0.73 Yes



• What are the frequentist properties of this trial design?

• Simulating 1000 trials under different scenarios:

• Probability of false positives (type I error) under a scenario where 
the percentage of CR is 10%;

• Probability of early termination  under a scenario where the 
percentage of CR is 10%;

• Expected sample size  under a scenario where the percentage of CR 
is 10%.

• Probability of false negatives (type II error) under a scenario where 
the percentage of CR is 30%;
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Example: Predictive Probability for Futility



• What are the frequentist properties of this trial design?

• In a simulated trial, we can:

• Check whether the selected MTD is the true MTD;

• Calculate the percentage of patients receiving overly toxic doses;

• Calculate the Toxicity rate.

• Simulating 1000 trials, the frequentist properties are

• Probability of the selected MTD to be the true MTD;

• Average percentage of patients receiving overly toxic doses;

• Average toxicity rate.
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Example: Phase I clinical trials



Example: Response adaptive randomization (RAR)

1. Patients are initially equally randomized to control, drug A and drug B 
groups.

2. After every 20 patients are enrolled in each group, we can calculate the 
probability that treatment effect is greater than zero for drug A compared to 
control and drug B compared to control:

• pA = probability that drug A is better than control arm = 0.45;
• pB = probability that drug B is better than control arm = 0.9;

Control Drug A Drug B
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3. Update probabilities of randomization for each group based on the 
probability that each dose performs better than the control group.

4. At the end of trial, declare that a dose is effective if pA or pB are very large, 
in other words,  

pA > 0.9 or pB > 0.9.

Example: Response adaptive randomization 

Control Drug A Drug B
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Example: Response adaptive randomization 

• What are the frequentist properties that can be calculated for this trial 
design?

• Simulating 1000 trials under different scenarios:

• the probability to declare a drug is better than control in a scenario 
where drug A and drug B are equal to the control group (false positive); 

• the probability to declare a drug as ineffective in a scenario where drug 
A or/and drug B are better than control (false negative).
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Concluding Remarks
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Frequentist trial designs

• Advantages:

• Strong control of false positives results which is often required by 
regulatory agencies;

• Software is easily available;

• It does not require a lot of input from investigators;

• Disadvantages:

• There is not much flexibility with pre-specified procedures;

• It assumes that the average response is approximately normally 
distributed which is true only with large sample sizes or normally 
distributed samples;

• It is not possible to incorporate information from historical data or 
subjective information from the investigator.
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Bayesian trial designs

• Advantages:

• Incorporate sequential learning;

• Use of predictive probabilities of future results; 

• Suitable for small sample sizes.

• Disadvantages:

• It does not strongly control type I error;

• It requires a lot of input from investigators;

• It requires more time to design a trial and involvement of statistician 
during the trial;
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Questions?
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