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Currently, inferences can be conducted follow two approaches:
frequentism and Bayesianism.




Classical Statistical Methods




Classical Statistical Methods

It 1s based largely on the work of Karl
Pearson (1857 - 1936) and Ronald
Fisher (1890 — 1962).

Karl Pearson introduced the standard
deviation, Chi-squared test, p-value and
regression methods;

Ronald Fisher introduced the Fisher’s
Exact test, analysis of variance and
popularized the p-value.

A mathematical framework was
proposed by Jerzy Neyman (1894 —
1981) and Egon Pearson (1895 — 1980).
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Classical Statistical Methods

We are interested in populational quantities, known as parameters, that are
unknown and fixed: prevalence of disease, treatment effect of a new drug,
association between exposure and outcome;

Experiments are conduct to collect data to estimate the parameters;

However, any procedure in statistics carries uncertainty as we have limited
information provided by our sample;

How can we measure this uncertainty?

In the classical approach, we can measure this uncertainty when we
repeat a statistical procedure in all possible samples that could have
been sampled from the study population.




Classical Statistical Methods

Example: Our interest is to compare a new drug with a control group to
evaluate whether there are differences in a biomarker. Data will be
collected from 100 patients that will be equally randomized between drug
and control arms.

The classical approach assumes that this trial could be repeated several
times under the same conditions, in other words, there is uncertainty about
the sample.




Classical Statistical Methods

95% Confidence Interval (CI) for treatment effect: 2 [0.04 to 3.95];
How do you interpret a 95% CI?

We cannot state that there 1s 95% of probability that the treatment effect 1s
between 0.04 and 3.95 because the parameter treatment effect 1s fixed, in
other words, we cannot associate probability to parameters.

The correct interpretation is based on the sampling uncertainty: If we
calculate a 95% confidence interval for the treatment effect in each trial,
then 95 out of 100 confidence intervals will contain the true and unknown
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Classical Statistical Methods

Testing the hypotheses:

Null: Treatment effect 1s negative or zero
Alternative: Treatment effect is positive

Uncertainty: 5% type I error and 20% type 2 error (80% power);

How do we interpret those measures of uncertainty?




Classical Statistical Methods
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Identify a false treatment effect - false positive: obtaining a statistically
significant p-value in 5 out 100 trials under the scenario that there is no
treatment effect.

Miss a true treatment effect - false negative: obtaining a non-statistically
significant p-value in 20 out 100 trials under the scenario that there 1s a
treatment effect.




Classical Statistical Methods

Classical statistical methods are also known as frequentist statistical
methods because they allow us to make conclusions regarding all
possible samples without repeating a trial several times;

In order to make such frequentist conclusions, calculations are heavily
based on mathematical assumptions (large samples, average, normality),
therefore, procedures are pre-specified such that calculations can be
performed.
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Frequentist Trial Designs
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Example — Simon’s two stage design

Study Design: A single-arm two-stage study for a categorical outcome
Hypotheses:
Null: Complete response after new drug is at most 10%

Alternative: Complete response after new drug is at least 30%

Uncertainty:

Type I error: 5%
Type II error: 20% (power = 80%)
It minimizes the sample size when the drug 1s not effective.
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Example — Simon’s two stage design

Stage 1:
Sample size: 11 patients
Decision rules:

If one or fewer complete responses are observed, then the study
will stop and drug will be declared futile;

If two or more complete responses are observed, the study will
continue to stage 2;

Stage 2:
Sample size: 16 patients
Decision rules:

If at least 5 complete responses are observed among the total of
27 patients (11 + 16), then the drug is declared effective.

When the drug 1s not effective:
Probability of early termination is 0.69;
The expected sample size is 15.
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Example - Two stages using O’Brien-Fleming boundaries

Study Design: A two-arm two-stage study for a continuous outcome

Endpoint:
High values indicate good prognosis;
Minimum Clinically Important Difference = 5 units.

Hypotheses:
Null: Biomarker average is the same in intervention and control groups;

Alternative: Biomarker average in different between the intervention and
control groups.

Uncertainty:
Type I error: 5%
Type II error: 10% (power = 90%)
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Example - Two stages using O’Brien-Fleming boundaries

O’Brien-Fleming boundaries indicates how type I and II errors should be
spent in each stage.

Stage 1:
Sample size: 50 for each group
Type I error: 0.56%
Type II error: 2.0%

Stage 2:

Sample size: 50 for each group
Type I error: 4.44%
Type II error: 8.0%
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Example - Two stages using O’Brien-Fleming boundaries

Decision rules:

At the end of stage 1, a standardized
difference between groups (Z-Score or 5. Group-Sequential Plet
Z-Scale) 1s calculated. Then,

If the Z-score is below the Futility

boundary, then intervention is 20
declared futile; I
If Z-score is above the Efficacy 5 EE”?T"JB;:“;’;
boundary, then intervention is 10

declared efficacious;

0.5 1

If Z-score 1s between Efficacy and

0.0 =

Futility boundaries, the %0 o1 o0z 03 o4 os
intervention 1s declared promising Information
and the trial proceeds to stage 2.
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Example - Two stages using O’Brien-Fleming boundaries

At the end of stage 2:

If the Z-score 1s below the Futility
boundary, then intervention i1s

declared futile;

If Z-score 1s above the Efficacy
boundary, then intervention is
declared efficacious;
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Bayesian Statistical Methods
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Bayesian Statistical Methods

the the o1y
< that would
not die /&g
how bayes’ rule cracked
k<., the enigma code,
hunted down russian
submarines & emerged
triumphant from two &~
centuries of controversy
sharon bertsch mcgrayne

¥ 1 ¢ a Bay n, perhaps you should be,
lohn Allen Paulos, New York Fimes Book Revigw

. It 1s based on the seminal work of
Thomas Bayes (1701 — 1761);

Bayes' system was: Initial Belief +
New Data — Improved Belief;

It was rediscovered and popularized by
Pierre-Simon Laplace (1749 — 1827) who
applied this approach to astronomy;

Late 1n his life, Laplace discovered a
mathematical result — the Central Limit
Theorem - that led him to support the
frequentist approach.
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Bayesian Statistical Methods

the theory
<t that would
not die /&g
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hunted down russian
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centuries of controversy

sharon bertsch mcgrayne
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After Laplace’s death, the use of
Bayesian methods declined in science as
the modern science could not be based on
anything that was considered subjective.

Nonetheless, Bayesian methods had
continued to be used to solve practical
problems with a wide applications during

WWII, election polls from the 60s to 80s,
ete.

Only in the early 90s with the
availability of computational power, the
Bayesian methods have become popular
again.
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Bayesian Statistical Methods

We are 1n interested in populational quantities, known as parameters, that
are unknown and random: prevalence of disease, treatment effect of a new
drug, association between exposure and outcome.

Experiments are conduct to collect data to estimate the parameters;

As previously, any procedure in statistics carries uncertainty as we have
limited information provided by our sample.

How can we measure this uncertainty?

We can measure this uncertainty when we considered all possible
values for the parameters of interest with their associated
probabilities.
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Bayesian Statistical Methods

Example: Our interest 1s to compare a new drug with a control group to evaluate
whether there are differences in a biomarker. Data will be collected from 100 patients

that will be equally randomized between drug and control arms.
The 1nitial belief about the parameter i1s known as prior distribution;
The Bayesian approach assumes that the only sample 1s the observed sample;
Once data 1s observed, the updated belief is known as posterior distribution.

Information — Prior = Posterior
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Bayesian Statistical Methods

95% Credibility Interval (CI) for treatment effect: 2 [0.04 to 3.95];

How do you interpret a 95% CI?

Now, we can state there 1s 95% of probability that the treatment effect 1s
between 0.04 and 3.95.
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Bayesian Statistical Methods

We are interested 1n testing the hypotheses:

Null: Treatment effect 1s zero or less
Alternative: Treatment effect is greater than zero

Probability(Null hypothesis) = 0.0228
Probability(Alternative hypothesis) = 0.972
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Bayesian Statistical Methods

Based on the posterior distribution (uncertainty about the parameter after
data is collected), decision rules or procedures can be created as a block
building game.

After computational power has become widely available, frequentist
properties of Bayesian procedures can be calculated based on computational
simulations.
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Bayesian Trial Designs
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Example: Phase I clinical trials

In phase I clinical trials, investigators want to identify the maximum
tolerable dose (MTD) for a cytotoxic agent, in other words, a dose that has
an acceptable toxicity rate.

As 1t 1s the first study of a new drug in humans, sample sizes are limited,
and the study 1s conducted by stages.
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Example: Phase I clinical trials

* Based on the results, investigators decide how to escalate/de-escalate the dose for
the next cohort of patients:

Initial Belief + New Data — Improved Belief;
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Example: Phase I clinical trials

There are two classes of methods that establish decision rules to
escalate/de-escalate doses based on different criteria:

Model-based designs:
Continual Reassessment Method (CRM),
Escalation with Overdose Control (EWOC);
Model-assisted designs:
Bayesian Optimal Interval (BOIN),
Modified Toxicity Probability Interval (mTPI);
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Example: Predictive Probability for Futility

A single-arm study with an interim analysis to test the hypotheses:
Null: Complete response rate with the new drug is at most 10%
Alternative: Complete response rate with the new drug is at least 30%

Ah-hoc Decision Rule: If we observe at least 4 CR out 12 patients, then the
drug 1s declared efficacious;

Interim Analysis will be conducted after 9 patients;
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Example: Predictive Probability for Futility

After 9 patients, we have observed 2 complete responses.
What are the chances that the drug will be declared effective?

Data Possible Scenarios

add
200, YYYYYY YT

=)
ddddd 24444t did
add
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Example: Predictive Probability for Futility

The trial will be successful only 1f 2 or 3 CR are observed.

Scenario True CR Rate Trial
Conclusion

Out of 3 patients 0.1 /9 0.3 0.9 Drug.is
effective

0 CR 0.3 0.47 0.34 0.01 No

1 CR 0.24 0.40 0.44 0.02 No

2 CR 0.03 0.12 0.19 0.24 Yes

3 CR 0.001 0.01 0.03 0.73 Yes

Which scenario should be considered?

Under the Bayesian approach, the predictive probability is a weighted
average over all possible values of CR rate such that scenarios closer
to the data have large weights while scenarios far away from the data
have low weights.

Predictive probability that trial will be successful = 0.178
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Example: Predictive Probability for Futility

What are the frequentist properties of this trial design?

Simulating 1000 trials under different scenarios:

Probability of false positives (type I error) under a scenario where
the percentage of CR 1s 10%;

Probability of early termination under a scenario where the
percentage of CR is 10%;

Expected sample size under a scenario where the percentage of CR
is 10%.

Probability of false negatives (type II error) under a scenario where
the percentage of CR 1s 30%;
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Example: Phase I clinical trials

What are the frequentist properties of this trial design?

In a simulated trial, we can:
Check whether the selected MTD is the true MTD;
Calculate the percentage of patients receiving overly toxic doses;

Calculate the Toxicity rate.

Simulating 1000 trials, the frequentist properties are
Probability of the selected MTD to be the true MTD;
Average percentage of patients receiving overly toxic doses;

Average toxicity rate.
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Example: Response adaptive randomization (RAR)

1. Patients are initially equally randomized to control, drug A and drug B
groups.

™me A

Control Drug A Drug B

2. After every 20 patients are enrolled in each group, we can calculate the
probability that treatment effect is greater than zero for drug A compared to
control and drug B compared to control:

pa = probability that drug A 1s better than control arm = 0.45;

ps = probability that drug B 1s better than control arm = 0.9;
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Example: Response adaptive randomization

3. Update probabilities of randomization for each group based on the
probability that each dose performs better than the control group.

Mmr A
Control Drug A Drug B

4. At the end of trial, declare that a dose is effective if pA or pB are very large,
1n other words,

pa>0.9 or ps > (0.9.
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Example: Response adaptive randomization

What are the frequentist properties that can be calculated for this trial
design?

Simulating 1000 trials under different scenarios:

the probability to declare a drug is better than control in a scenario
where drug A and drug B are equal to the control group (false positive);

the probability to declare a drug as ineffective in a scenario where drug
A or/and drug B are better than control (false negative).
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Concluding Remarks
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Frequentist trial designs

Advantages:

Strong control of false positives results which 1s often required by
regulatory agencies;

Software 1s easily available;
It does not require a lot of input from investigators;

Disadvantages:
There 1s not much flexibility with pre-specified procedures;

It assumes that the average response is approximately normally
distributed which is true only with large sample sizes or normally
distributed samples;

It 1s not possible to incorporate information from historical data or
subjective information from the investigator.
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Bayesian trial designs

Advantages:

Incorporate sequential learning;
Use of predictive probabilities of future results;

Suitable for small sample sizes.

Disadvantages:
It does not strongly control type I error;

It requires a lot of input from investigators;

It requires more time to design a trial and involvement of statistician
during the trial;
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Questions?
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